20 research outputs found

    Non-uniform sampling and reconstruction of multi-band signals and its application in wideband spectrum sensing of cognitive radio

    Full text link
    Sampling theories lie at the heart of signal processing devices and communication systems. To accommodate high operating rates while retaining low computational cost, efficient analog-to digital (ADC) converters must be developed. Many of limitations encountered in current converters are due to a traditional assumption that the sampling state needs to acquire the data at the Nyquist rate, corresponding to twice the signal bandwidth. In this thesis a method of sampling far below the Nyquist rate for sparse spectrum multiband signals is investigated. The method is called periodic non-uniform sampling, and it is useful in a variety of applications such as data converters, sensor array imaging and image compression. Firstly, a model for the sampling system in the frequency domain is prepared. It relates the Fourier transform of observed compressed samples with the unknown spectrum of the signal. Next, the reconstruction process based on the topic of compressed sensing is provided. We show that the sampling parameters play an important role on the average sample ratio and the quality of the reconstructed signal. The concept of condition number and its effect on the reconstructed signal in the presence of noise is introduced, and a feasible approach for choosing a sample pattern with a low condition number is given. We distinguish between the cases of known spectrum and unknown spectrum signals respectively. One of the model parameters is determined by the signal band locations that in case of unknown spectrum signals should be estimated from sampled data. Therefore, we applied both subspace methods and non-linear least square methods for estimation of this parameter. We also used the information theoretic criteria (Akaike and MDL) and the exponential fitting test techniques for model order selection in this case

    Parameter Selection in Periodic Nonuniform Sampling of Multiband Signals

    Full text link
    Periodic nonuniform sampling has been considered in literature as an effective approach to reduce the sampling rate far below the Nyquist rate for sparse spectrum multiband signals. In the presence of non-ideality the sampling parameters play an important role on the quality of reconstructed signal. Also the average sampling ratio is directly dependent on the sampling parameters that they should be chosen for a minimum rate and complexity. In this paper we consider the effect of sampling parameters on the reconstruction error and the sampling ratio and suggest feasible approaches for achieving an optimal sampling and reconstruction

    A NLLS based sub-Nyquist rate Spectrum Sensing for Wideband Cognitive Radio

    Get PDF
    For systems and devices, such as cognitive radio and networks, that need to be aware of available frequency bands, spectrum sensing has an important role. A major challenge in this area is the requirement of a high sampling rate in the sensing of a wideband signal. In this paper a wideband spectrum sensing method is presented that utilizes a sub-Nyquist sampling scheme to bring substantial savings in terms of the sampling rate. The correlation matrix of a finite number of noisy samples is computed and used by a NLLS estimator to detect the occupied and vacant channels of the spectrum. We provide an expression for the detection threshold as a function of sampling parameters and noise power. Also, a sequential forward selection algorithm is presented to find the occupied channels in a low complexity. The method can be applied to both correlated and uncorrelated wideband multichannel signals. A comparison with conventional energy detection using Nyquist-rate sampling shows that the proposed scheme can yield similar performance for SNR above 4 dB with a factor of 3 smaller sampling rate

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Global variations in diabetes mellitus based on fasting glucose and haemogloblin A1c

    Get PDF
    Fasting plasma glucose (FPG) and haemoglobin A1c (HbA1c) are both used to diagnose diabetes, but may identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening had elevated FPG, HbA1c, or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardised proportion of diabetes that was previously undiagnosed, and detected in survey screening, ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the agestandardised proportion who had elevated levels of both FPG and HbA1c was 29-39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global gap in diabetes diagnosis and surveillance.peer-reviewe

    Parameter selection in periodic nonuniform sampling of multiband signals

    No full text
    Periodic nonuniform sampling has been considered in literature as an effective approach to reduce the sampling rate far below the Nyquist rate for sparse spectrum multiband signals. In the presence of non-ideality the sampling parameters play an important role on the quality of reconstructed signal. Also the average sampling ratio is directly dependent on the sampling parameters that they should be chosen for a minimum rate and complexity. In this paper we consider the effect of sampling parameters on the reconstruction error and the sampling ratio and suggest feasible approaches for achieving an optimal sampling and reconstruction

    Parameter selection in periodic nonuniform sampling of multiband signals

    No full text
    Periodic nonuniform sampling has been considered in literature as an effective approach to reduce the sampling rate far below the Nyquist rate for sparse spectrum multiband signals. In the presence of non-ideality the sampling parameters play an important role on the quality of reconstructed signal. Also the average sampling ratio is directly dependent on the sampling parameters that they should be chosen for a minimum rate and complexity. In this paper we consider the effect of sampling parameters on the reconstruction error and the sampling ratio and suggest feasible approaches for achieving an optimal sampling and reconstruction

    Weights and Imputations in SHARE Wave 8

    No full text
    In this chapter, we first use the different patterns of participation to define three subsamples of primary interest for the analysis of the SHARE data collected in Wave 8: CAPI, CATI and CAPI & CATI. We then describe the procedure used to construct calibrated cross-sectional and longitudinal weights for handling, respectively, problems of unit non-response and attrition in the CAPI subsample. Afterwards, we describe the model used to obtain multiple imputations of the missing values due to item non-response in the CAPI data

    A new method to compute optimal periodic sampling patterns

    No full text
    It is possible to reconstruct a signal from cyclic nonuniform samples and thus take advantage of a lower sampling rate than the Nyquist rate. However, this has the potential drawback of amplifying signal perturbations, e.g. due to noise and quantization. We propose an algorithm based on sparse reconstruction techniques, which is able to find the sparsest sampling pattern that permits perfect reconstruction of the sampled signal. The result of our algorithm with a proper constraint values is a sparse subset of samples that results in an ideal condition number for its equivalent sub-DFT matrix. Besides, our algorithm has low complexity in terms of computation. The method is illustrated by simulations for a sparse multi band signal
    corecore